• <span id="inn7i"><optgroup id="inn7i"></optgroup></span>
    技術文章您現在的位置:首頁 > 技術文章 > ClickChemistry點擊化學疊氮試劑Azide Plus and Picolyl Azide Reagents

    ClickChemistry點擊化學疊氮試劑Azide Plus and Picolyl Azide Reagents

    更新時間:2023-04-22   點擊次數:1377次

    Azide Plus and Picolyl Azide 試劑

    Kinetic comparison of conventional azide
    (Figure 1). Kinetic comparison of chelating azide and non-chelating conventional azide.

    Recent advances in the design of copper-chelating ligands, such as THPTA or BTTAA that stabilize the Cu(I) oxidation state in aqueous solution, improve the kinetics of the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction and greatly increase the sensitivity of alkyne detection. Copper-chelating ligands have also been shown to increase the biocompatibility of the CuAAC reaction by preventing the copper ions from causing biological damage1. The next step in improving the CuAAC reaction was the development of copper-chelating azides as more reactive substrates. Since it is speculated that the Cu(I)-azide association is the rate-determining step in the CuAAC catalytic cycle2, the introduction of a copper-chelating moiety at the azide reporter molecule allows for a dramatic raise of the effective Cu(I) concentration at the reaction site, enhancing the weakest link in the reaction rate acceleration(Figure 2). It has been proposed that the high reactivity of chelating azides comes from the rapid copper-azido group interaction which occurs prior to Cu(I) acetylide formation, and this renders the deprotonation of alkyne in the rate-determining step3. This concept was successfully exploited to perform CuAAC reactions using pyridine-based copper-chelating azides (picolyl azides) as substrates4-6. Nevertheless, the copper-chelating motif of picolyl azide molecules is not complete, requiring the presence of a copper chelator (e.g. THPTA) to achieve significant improvement in the kinetics of the CuAAC reaction3, 4.

    In efforts to improve the performance of the CuAAC reaction in complex media, Click Chemistry Tools developed new chelating azides with a complete copper-chelating system in their structure, termed “Azides Plus"(Figure 3). These azides are capable of forming strong, active copper complexes and are therefore considered both reactant and catalyst in the CuAAC reaction. Using these types of azides, the CuAAC reaction becomes a bimolecular reaction and displays much faster kinetics compared to the CuAAC reaction performed with conventional azides.

    Comparative kinetic measurements for the CuAAC reaction(Figure 4)were performed using an agarose-alkyne resin labeling experiment (3.0 uM CuSO4, with (6.0 uM) or without THPTA ligand) using Cy5 Azide Plus, Cy5 Picolyl Azide, and Cy5 bis-Triazole Azide – the fastest copper-chelating azide that has been reported to date7. As expected, the picolyl azide containing the incomplete copper-chelating motif displays relatively slow reactivity, in particular without the presence of THPTA. The kinetic data shows that completing a copper-chelating moiety greatly enhances reactivity, and importantly does not require the presence of copper-chelating ligands. Interestingly, the copper-chelating azides developed by Click Chemistry Tools display almost identical reactivity in the CuAAC reaction compared to the most reactive copper-chelating azide reported up to now7, bis-triazole azide.

    The new copper chelating azides allow the formation of azide copper complexes that react almost instantaneously with alkynes under diluted conditions. This unprecedented reactivity in the CuAAC reaction is of special value for the detection of low abundance targets, improving biocompatibility, and any other application where greatly improved S/N ratio is highly desired.

    Selected References:
    1. Steinmetz, N. F., et al. (2010). Labeling live cells by copper-catalyzed alkyne–azide click chemistry. Bioconjug Chem., 21 (10), 1912-6. [PubMed]

    2. Rodionov, V. O., et al. (2007). Ligand-accelerated Cu-catalyzed azide-alkyne cycloaddition: a mechanistic report. J Am Chem Soc., 129 (42), 12705-12. [PubMed]
      Presolski, S. I., et al. (2010). Tailored ligand acceleration of the Cu-catalyzed azide-alkyne cycloaddition reaction: practical and mechanistic implications. J Am Chem Soc., 132 (41), 14570-6. [PubMed]

    3. Simmons, J. T., et al. (2011). Experimental investigation on the mechanism of chelation-assisted, copper(II) acetate-accelerated azide-alkyne cycloaddition. J Am Chem Soc., 133 (35), 13984-4001. [PubMed]

    4. Marlow, F. L., et al. (2014). Monitoring dynamic glycosylation in vivo using supersensitive click chemistry. Bioconjug Chem., 25 (4), 698-706. [PubMed]

    5. Clarke, S., et al. (2012). Fast, cell-compatible click chemistry with copper-chelating azides for biomolecular labeling. Angew Chem Int Ed Engl., 51 (24), 5852-6. [PubMed]

    6. Gaebler, A., et al. (2016). A highly sensitive protocol for microscopy of alkyne lipids and fluorescently tagged or immunostained proteins. J Lipid Res., 57 (10), 1934-1947. [PubMed]

    7. Gabillet, S., et al. (2014). Copper-chelating azides for efficient click conjugation reactions in complex media. Angew Chem Int Ed Engl., 53 (23), 5872-6. [PubMed]

    訂購信息(靶點科技國內倉庫):


    靶點科技(北京)有限公司

    靶點科技(北京)有限公司

    地址:中關村生命科學園北清創意園2-4樓2層

    © 2025 版權所有:靶點科技(北京)有限公司  備案號:京ICP備18027329號-2  總訪問量:344305  站點地圖  技術支持:化工儀器網  管理登陸

    主站蜘蛛池模板: 亚洲成aⅴ人片久青草影院按摩| 亚洲无线码在线一区观看| 亚洲综合综合在线| 国产一区二区三区免费| 国产亚洲精品a在线无码| GOGOGO免费观看国语| 久久亚洲2019中文字幕| 人成电影网在线观看免费| 亚洲第一黄色网址| 久久久久久av无码免费看大片| 一级毛片直播亚洲| 国产精品极品美女自在线观看免费 | 在线观看亚洲精品福利片| 国产精品玖玖美女张开腿让男人桶爽免费看| 免费大片黄手机在线观看| 国产高清对白在线观看免费91| 国产亚洲欧洲Aⅴ综合一区 | 亚色九九九全国免费视频| 精品久久久久久亚洲精品| 日韩成人在线免费视频| 免费国产va视频永久在线观看| 一本久久a久久精品亚洲| 无码囯产精品一区二区免费| 亚洲乱码一二三四区国产| 日本不卡免费新一二三区| 有色视频在线观看免费高清在线直播 | 国产网站在线免费观看| 九九久久国产精品免费热6 | 国产亚洲真人做受在线观看| 日韩精品无码专区免费播放| 亚洲一级黄色大片| 国产免费av片在线播放| 免费人成在线观看视频高潮| 亚洲视频一区二区在线观看| 四虎在线视频免费观看| 国产高清对白在线观看免费91| 亚洲黑人嫩小videos| 免费亚洲视频在线观看| 最刺激黄a大片免费网站| 亚洲成AV人影片在线观看| 亚洲欧洲日产国码无码网站 |