• <span id="inn7i"><optgroup id="inn7i"></optgroup></span>
    技術文章您現(xiàn)在的位置:首頁 > 技術文章 > ClickChemistry點擊化學疊氮試劑Azide Plus and Picolyl Azide Reagents

    ClickChemistry點擊化學疊氮試劑Azide Plus and Picolyl Azide Reagents

    更新時間:2023-04-22   點擊次數(shù):1173次

    Azide Plus and Picolyl Azide 試劑

    Kinetic comparison of conventional azide
    (Figure 1). Kinetic comparison of chelating azide and non-chelating conventional azide.

    Recent advances in the design of copper-chelating ligands, such as THPTA or BTTAA that stabilize the Cu(I) oxidation state in aqueous solution, improve the kinetics of the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction and greatly increase the sensitivity of alkyne detection. Copper-chelating ligands have also been shown to increase the biocompatibility of the CuAAC reaction by preventing the copper ions from causing biological damage1. The next step in improving the CuAAC reaction was the development of copper-chelating azides as more reactive substrates. Since it is speculated that the Cu(I)-azide association is the rate-determining step in the CuAAC catalytic cycle2, the introduction of a copper-chelating moiety at the azide reporter molecule allows for a dramatic raise of the effective Cu(I) concentration at the reaction site, enhancing the weakest link in the reaction rate acceleration(Figure 2). It has been proposed that the high reactivity of chelating azides comes from the rapid copper-azido group interaction which occurs prior to Cu(I) acetylide formation, and this renders the deprotonation of alkyne in the rate-determining step3. This concept was successfully exploited to perform CuAAC reactions using pyridine-based copper-chelating azides (picolyl azides) as substrates4-6. Nevertheless, the copper-chelating motif of picolyl azide molecules is not complete, requiring the presence of a copper chelator (e.g. THPTA) to achieve significant improvement in the kinetics of the CuAAC reaction3, 4.

    In efforts to improve the performance of the CuAAC reaction in complex media, Click Chemistry Tools developed new chelating azides with a complete copper-chelating system in their structure, termed “Azides Plus"(Figure 3). These azides are capable of forming strong, active copper complexes and are therefore considered both reactant and catalyst in the CuAAC reaction. Using these types of azides, the CuAAC reaction becomes a bimolecular reaction and displays much faster kinetics compared to the CuAAC reaction performed with conventional azides.

    Comparative kinetic measurements for the CuAAC reaction(Figure 4)were performed using an agarose-alkyne resin labeling experiment (3.0 uM CuSO4, with (6.0 uM) or without THPTA ligand) using Cy5 Azide Plus, Cy5 Picolyl Azide, and Cy5 bis-Triazole Azide – the fastest copper-chelating azide that has been reported to date7. As expected, the picolyl azide containing the incomplete copper-chelating motif displays relatively slow reactivity, in particular without the presence of THPTA. The kinetic data shows that completing a copper-chelating moiety greatly enhances reactivity, and importantly does not require the presence of copper-chelating ligands. Interestingly, the copper-chelating azides developed by Click Chemistry Tools display almost identical reactivity in the CuAAC reaction compared to the most reactive copper-chelating azide reported up to now7, bis-triazole azide.

    The new copper chelating azides allow the formation of azide copper complexes that react almost instantaneously with alkynes under diluted conditions. This unprecedented reactivity in the CuAAC reaction is of special value for the detection of low abundance targets, improving biocompatibility, and any other application where greatly improved S/N ratio is highly desired.

    Selected References:
    1. Steinmetz, N. F., et al. (2010). Labeling live cells by copper-catalyzed alkyne–azide click chemistry. Bioconjug Chem., 21 (10), 1912-6. [PubMed]

    2. Rodionov, V. O., et al. (2007). Ligand-accelerated Cu-catalyzed azide-alkyne cycloaddition: a mechanistic report. J Am Chem Soc., 129 (42), 12705-12. [PubMed]
      Presolski, S. I., et al. (2010). Tailored ligand acceleration of the Cu-catalyzed azide-alkyne cycloaddition reaction: practical and mechanistic implications. J Am Chem Soc., 132 (41), 14570-6. [PubMed]

    3. Simmons, J. T., et al. (2011). Experimental investigation on the mechanism of chelation-assisted, copper(II) acetate-accelerated azide-alkyne cycloaddition. J Am Chem Soc., 133 (35), 13984-4001. [PubMed]

    4. Marlow, F. L., et al. (2014). Monitoring dynamic glycosylation in vivo using supersensitive click chemistry. Bioconjug Chem., 25 (4), 698-706. [PubMed]

    5. Clarke, S., et al. (2012). Fast, cell-compatible click chemistry with copper-chelating azides for biomolecular labeling. Angew Chem Int Ed Engl., 51 (24), 5852-6. [PubMed]

    6. Gaebler, A., et al. (2016). A highly sensitive protocol for microscopy of alkyne lipids and fluorescently tagged or immunostained proteins. J Lipid Res., 57 (10), 1934-1947. [PubMed]

    7. Gabillet, S., et al. (2014). Copper-chelating azides for efficient click conjugation reactions in complex media. Angew Chem Int Ed Engl., 53 (23), 5872-6. [PubMed]

    訂購信息(靶點科技國內(nèi)倉庫):


    靶點科技(北京)有限公司

    靶點科技(北京)有限公司

    地址:中關村生命科學園北清創(chuàng)意園2-4樓2層

    © 2025 版權所有:靶點科技(北京)有限公司  備案號:京ICP備18027329號-2  總訪問量:305311  站點地圖  技術支持:化工儀器網(wǎng)  管理登陸

    主站蜘蛛池模板: 亚洲国产aⅴ成人精品无吗| 亚洲一级毛片免费看| 免费人成再在线观看网站| 永久久久免费浮力影院| 激情综合亚洲色婷婷五月| 57PAO成人国产永久免费视频| 911精品国产亚洲日本美国韩国| 免费国产黄网站在线观看 | 亚洲精品精华液一区二区| 成年女人免费v片| 亚洲精华液一二三产区| 国产一区二区免费在线| 一二三四在线观看免费中文在线观看| 亚洲国产成人影院播放| 国产在线播放线91免费| 久久精品国产亚洲av日韩| 一个人免费观看在线视频www| 久久亚洲中文无码咪咪爱| 婷婷亚洲天堂影院| 午夜免费啪视频在线观看 | 亚洲欧美日韩中文高清www777| 午夜两性色视频免费网站| 免费福利资源站在线视频| 亚洲啪啪AV无码片| 日本片免费观看一区二区| 亚洲日韩AV无码一区二区三区人| 免费看一级做a爰片久久| 在线观看免费黄网站| 亚洲制服丝袜第一页| 全亚洲最新黄色特级网站 | 国产永久免费高清在线| 亚洲一区二区三区91| 亚洲黄片手机免费观看| 日韩人妻一区二区三区免费| 亚洲色大情网站www| 亚洲人成网亚洲欧洲无码久久| 精品久久久久成人码免费动漫| 四虎国产精品永免费| 91亚洲国产成人精品下载| 青青青国产色视频在线观看国产亚洲欧洲国产综合 | 国产黄色免费观看|